
Journal of Statistical Physics, Vol. 90, Nos. 5/6, 1998

KEY WORDS: Computer simulation; cellular automata; nonequilibrium
forms of growth; dendrites; morphology; nonequilibrium phase transitions.

1. INTRODUCTION

There is great interest in theoretical and experimental questions on the
formation of complex space-time structures appearing in nonequilibrium
processes. Various systems (e.g., hydrodynamic, chemical, biological) have
been discussed in which a sudden change of properties and symmetry
occurs at critical values of thermodynamic flows and forces (so-called non-
equilibrium phase transitions).(1-3) One of the most interesting, practically
important and complex systems involves the nonequilibrium growth of
crystals from a solution/melt at significant supersaturations/undercoolings,
which results in skeletal and dendritic forms.(4) The influence of an impurity
on such a nonequilibrum crystal growth is not well understood, because
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Two-dimensional nonequilibrium growth of crystals (quasistable faceted and
dendritic) in the presence of a phase separating impurity is studied by computer
simulation. It is shown that there is a gradual modification in this system from
quasistable faceted growth to the formation of dendrites when the impurity con-
centration increases. If there is dendritic growth in the presence of a phase-
separating impurity, the cyclic changes in the morphology, expressed through
the periodic occurrence of tertiary branches of a dendrite, are observed when
the phase-separating impurity concentration is raised. This behavior of the
morphology is considered as a reentrant nonequilibrium phase transition.

Computer Simulation of Nonequilibrium Growth of
Crystals in a Two-Dimensional Medium with a
Phase-Separating Impurity

L. M. Martiouchev,1,2 V. D. Seleznev,2 and S. A. Skopinov1

Received February 21, 1997; final November 24, 1997



there are two types of effects: thermodynamic (the impurity changes
solubility, freezing temperature, etc.) and kinetic (the impurity influences
the processes occurring at the crystal-solution interface).

In the present work, the morphological aspects of two-dimensional
nonequilibrum growth of a crystal from solution in the presence of an
impurity is studied with the help of a computer model. Initially this work
was stimulated by the development of methods for medical diagnostics
based on the crystallization of salts from biofluids (see, for example, ref. 5).
A similar system was discussed by the authors earlier using the computer
t-model.(6) In that work it was shown that both a continuous change of the
morphology and a sudden nonequilibrium phase transition occur during
the growth of a skeletal crystal in a phase-separating medium. The present
work considers quasistable faceted growth and the growth of a dendrite (a
structure which forms at large deviations from equilibrium in comparison
with skeletal) in a phase-separating medium, with the aid of the same
model.

2. BRIEF REVIEW OF EXISTING APPROACHES TO
CRYSTAL GROWTH SIMULATION

Because of the mathematical difficulties of the analysis, the morpho-
logical peculiarities of forming dendritic structures have been studied
mainly by computer simulation. There are two basic approaches to the
simulation of these phenomena. In the first,(7) researchers base their com-
puter models, as far as possible, on a strict theoretical description of these
phenomena, including both the basic diffusion/heat equations and Gibbs-
Thomson equation, the anisotropy of the surface energy and the kinetic
coefficient of crystallization, the phase diagram of the system, etc. This
approach is useful for describing quantitatively rather simple, thoroughly
experimentally investigated systems. The second approach to simulation
uses cellular automata.(8) In this approach the investigated area is con-
sidered as a set of cells, each of them characterized by a definite set of
variables. These variables, depending on the condition of the neighboring
cells, vary their values in discrete time steps. The calculation rules are only
indirectly built on theoretical models of the phenomenon, and are mainly
defined by intuition. Such models are useful for studying complex systems.
They give some qualitative understanding of the process, and allow one to
test and to put forward new hypotheses, but it is difficult to use them for
quantitative estimations.

The T-model,(6,9) used in this work occupies an intermediate position
between these two approaches to modeling, embracing, as far as possible,
the best aspects of each.
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3. EXPERIMENTAL RESULTS STIMULATING THIS RESEARCH

The kinetic action of an impurity combines the influence on the pro-
cesses of the transfer in volume and the influence on the phenomena of
crystallization on the surface, of which the latter is the most essential.(10)
It is possible to divide the effect of the impurity on the crystallization
processes on the surface into two groups.

1. The adsorption of the impurity in the form of atoms, molecules, or
complexes on the surface. The physical and chemical parameters of the

Fig. 1. The morphology of NaCl growing from an aqueous solution in the presence of
albumin. The initial concentration of albumin: (a) 2 mg/ml, (b) 8 mg/ml, (c) 15 mg/ml.
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impurity prevent it from entering the crystal. Impurities that accumulate on
the surface of the crystal are usually the reason for either a gradual reduc-
tion of the growth rate or an end to crystal growth at a critical concentra-
tion.(10) Such a behavior of the impurity results in a change of the crystal
morphology and in particular in the development of dendrites.(11)

2. The impurity (usually in the form of macromolecules, such as
proteins, lipids, etc.) displaced by the growing crystal surface reaches a
certain concentration and has a transition to another phase, thus creating
local obstacles to the growth. Examples of such phase transitions are those
from solution to gel in the case of proteins(12) or from vesicles to the
lamellar phase in the case of lipids.(13) The accumulation of the impurity
becomes possible due to the small value of its diffusion coefficient (about
10-7cm/s2 for proteins, which is two orders less than the diffusion coef-
ficient of salt). Such a phase-separated impurity, creating various films on
a crystal substrate, leads to the formation of dendritic structures.(14)

Figure 1 shows the results of an experiment on the growth of NaCl
crystals from water solution in the presence of the protein albumin.(15)
The experiment was carried out under quasi-two-dimensional conditions,
eliminating convection. From the figure one can see that with the increase
of the protein concentration the cubic crystal NaCl changes to dendritic.
The formation of dendrites is explained in this work by the second
mechanism of impurity action given above. However, one can suppose that
in this case the first mechanism should not be neglected, because proteins
(albumin in particular) are surface-active.(16)

Fig. 1. (Continued)
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4. MODEL

The model (named by the authors as the i-model) was created on the
principles of a cellular automaton. The following rules (see ref. 9 for details)
were used.

4.1. General Rules

a. The calculation is carried out on a 100x100 square grid with
thickness L, where the size of each square is L. The choice of a square grid
presupposes that the growth of crystals having a cubic symmetry can be
simulated. The size L is selected to be approximately the same as the
resolution of the proposed device to observe the growing crystal of salt. It
is supposed that each cell has four nearest neighbors.

b. As the interval of time through which the calculation of the con-
centration fields is made, the time for the relaxation of the concentration
between two neighboring cells r = L 2 / ( 2 D s ) is chosen, where Ds is the diffu-
sion coefficient of a component (salt).

c. Each cell is characterized by two numbers: the concentration of
the salt Cv and the concentration of the second component (impurity) Cp,
At the initial moment of time the concentrations in all cells are identical
and are respectively equal to Cs. in and Cp . i n .

d. All the cells are divided into the following groups:

(i) cells of the crystal (black color). For these cells C, = Cv sol (Cs sol

is the density of the solid salt), Cp = 0.
(ii) Cells with the phase-separated impurity (grey color). For these

cells Cp = Cp .sol, where Cp sol is the concentration of impurity gelling.
( i i i ) cells of the solution (white color) Cv^Cs.sol, Cp ^Cp.sol.
( iv) Border cells (white color). These cells of the solution are the

nearest to the cells of the crystal (see details below).

e. It is postulated that there appears a viable crystal seed (cell of a
crystal) at the center of the square grid which initiates the growth.

4.2. Rules Relating to Border Cells

a. The density of salt flux / at each interval of time T coming into
these cells is calculated from the assumption that the surface kinetics is
quasi-isotropic and the growth rate is linear in the supersaturation(10):
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where Cs.i is the current concentration of salt in a cell i of the solution,
being in the neighborhood of a border cell, Csat is the saturation concentra-
tion of the solution, and b is the kinetic coefficient of crystallization (related
to the nature and structure of the crystal surface, its nearest neighborhood,
and temperature(10)). The sum is carried out only for cells of the solution
which are nearest neighbors of the border cells.

b. The density of the impurity flux from border cells is determined
from the assumption of its complete displacement by the growing crystal
into the nearest cells of the solution.

c. Choosing new border cells beside a newly painted (black) cell,
such cells of the solution are not considered where there is already one
border cell in the neighborhood. This feature of the algorithm has the
physical rationale that crystal seeds are at a disadvantage in arising in the
vicinity of one another because the energy of nucleation in these locations
is bigger (the supersaturation is smaller).

4.3. Rules Relating to Cells of the Solution

a. It is considered that the fluxes of salt and of the second component
in the solution are not connected, and therefore the calculations of the
density of salt and of impurity fluxes are done independently.

b. The rule for the calculation of the concentration in the cell of the
solution (for example, for a salt) has the following form:

The concentration in the cell changes due to the influx of salt from the
nearest cells in which the concentration is greater (positive flux) and due
to the outflow of salt to the nearest cells with lower concentration (negative
flux). The general positive density of salt flux Ip, into a given cell of the
solution during the l-iteration is
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cells, Cs,i is the current concentration in the i nearest solution cell, and Cs

is the concentration of the given cell. The sum is carried out only for cells
where the concentration is greater than in the given cell.



The sum is carried out only for cells where the concentration is lower than
in the given cell.

This rule follows directly from Fick's first law in dilute solutions and
from using T as interval of time, i.e., the time of the relaxation of the
concentration between two cells. In applying the given rule, the diffusion
coefficient of the impurity (Dp) is used for the impurity.

4.4. Rules for Cells with a Phase-Separated Impurity

It is supposed that the impurity diffusion coefficient is sufficiently
small, and the displacement of the impurity results in its accumulation near
the crystal surface. We shall consider here that when the impurity concen-
tration in the cell reaches a value Cp.sol, the impurity transfers to another
phase, in which any flux through this cell is forbidden and salt crystalliza-
tion in it is impossible.

4.5. Rules for Cells of a Crystal

Having achieved the concentration Cs.sol in a border cell, it is trans-
formed to the cell of a crystal. These cells do not take part in subsequent
calculations.

5. RESULTS AND DISCUSSION

5.1. Quasistable Faceted Growth in the Presence of a Phase-
Separating Impurity

The following parameters were chosen for the simulation: b =
2.2 x 10-4 cm/s; L = 10-4 cm; Ds = 1.5 x 10-5 cm2/s, Cs.sol = 2.2 g/cm3,
Cs.sal = 0.36 g/cm3 (corresponding to parameters for NaCl). Thus, bA/D,«
1.5x10-2 , where A is a characteristic size of the crystal ( /~10L). The
value of relative supersaturation (Cs. in —Csat)/CSat was selected so that on
the one hand faceted growth occurred, and on the other hand, the calcula-
tion of the structure by computer was as rapid as possible. We chose the
value 0.9. Since bA/ZDs is much less than one, then, according to ref. 10, the
supersaturation on the surface is practically equal to the supersaturation in
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the bulk. The crystal in general keeps a faceted form in the absence of the
impurity during growth (Fig. 2). The curvature of the phase boundary peri-
odically arising during the growth (Fig. 2b), because the tops "eat" from a
greater solid angle, is compensated by the geometrical peculiarities of the
square grid used in the simulation (Fig. 2c).

The morphology of the crystals becomes extremely complicated if we
add the impurity to the solution according to the rules described above
(Fig. 3). At relatively small concentrations of the impurity Cp . in/Cp . so l , the
crystal heterogeneously holding the impurity still keeps a faceted form
(Fig. 3a). The crystal becomes more and more friable and its surface gets
some typical fractal outlines(3) (Fig. 3b) for increasing relative concentra-
tion of the impurity up to 0.2-0.25. For a concentration of the impurity of
about 0.30 the morphology of the crystal begins to resemble the cellular
dendrites (Fig. 3c) described in the literature.(17) A further increase of
impurity concentration results in typical dendrites with branches up to the
fifth order (Fig. 3d). The picture shows the process of coarsening of branch
spacings (double and fourfold) which is typical for dendrites.(18) This

Fig. 2. The morphology of quasistable faceted growth, (a-c) The consecutive stages of
development of a crystal.
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Fig. 3. The morphology of faceted growth upon the change of relative initial impurity con-
centration Cp.in/Cp_sol: (a) 0.10, (b) 0.25, (c) 0.33, (d) 0.45. The black color shows the dis-
tribution of salt, grey the distribution of the phase-separated impurity; the distribution of the
impurity is shown (the distribution of salt is not shown) for convenience in the right bottom
quarter. The fractal dimension of the resulted structures is equal, respectively, to 1.94 + 0.02,
1.80 + 0.02, 1.73 ±0.05, and 1.65 ±0.06.

process is obviously connected with the mechanism of pressing back the
impurity. The structures found by computer experiment (Figs. 3a, 3b, 3d)
qualitatively agree with structures found in experiments (Fig. 1). It is
necessary to emphasize that the morphology of crystals is continuously
changed along with the increase of the impurity concentration. Such
changes are typical for quasistable systems. The fractal dimension of the
resulting structures decreases linearly from two (corresponding to the
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absence of the impurity) to 1.65 + 0.06, which corresponds to a relative
concentration of the impurity of 0.45 (for more details see the caption to
Fig. 3). The mass of the impurity that is changing phase, and the mass of
the salt crystals, also change rather gradually. The growth rate of the
crystal is constant at any impurity concentration because the kinetic-con-
trolled regime of crystal growth is examined with the extremely simplified
algorithm.

5.2. Dendritic Growth in the Presence of a Phase-Separating
Impurity

The following parameters were chosen for the simulation: b =
2.2x10-2cm/s; L=10- 4 cm; Ds = 1.5 x 10-5cm2/s, Cs.sol = 2.2g/cm3,
Csat = 0.36 g/cm3; the relative supersaturation was 0.9, i.e., only the value of
the kinetic coefficient of the crystallization was changed. In this case the
parameter bA/Ds was about 1.5 and, as shown in ref. 9, at such a choice of
parameters in the absence of the impurity there is a growth of dendrites
with branches up to the third order in the system. Note that the necessary
condition for the accumulation of the impurity is bt./Dp > 1 and, as the
kinetic coefficient of crystallization differs greatly between the previous and
the present experiment, the impurity diffusion coefficient used in each of
these experiments will differ.

The sequence of structures due to the growth of dendrites in the
presence of an increased concentration of impurity (Cp.in/Cp.sol) is shown
in Fig. 4. The morphological changes here are more delicate in comparison
with the previous case, and are more interesting. At first there is a gradual
filling of intervals between branches by the impurity having a transition to
another phase, and this does not practically influence the structure of the
growing dendrite (Fig. 4a). The growth rate at this stage increases slowly
and the mass of the impurity having a transition to another phase increases
exponentially (see Fig. 5). At a relative concentration of the impurity in the
region of 0.56, the presence of the impurity results in the occurrence of den-
drites mainly with only secondary branches (Fig. 4b). Earlier research(6)
shows that a simplification of the structure beginning from this moment
gradually proceeds, namely there is a gradual increase of the intervals
between branches. Now, however, the dendrite again has tertiary branches
in the region of relative impurity concentration 0.58-0.63 (Fig. 4c). But
at the impurity concentration 0.64 the dendrite morphology has only
secondary branches (Fig. 4d). With further addition of the impurity the
dendrites get branches up to the third order again (Fig. 4e), and then there
is a very fast transition to the underdeveloped crystal structures.
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Fig. 4. The morphology of dendritic growth upon the change of relative initial impurity con-
centration Cp.in/Cp.sol: (a) 0.53, (b) 0.56, (c) 0.59, (d) 0.65, (e) 0.67. The black color shows
the distribution of salt, grey the distribution of the phase-separated impurity; the distribution
of the impurity is shown (the distribution of salt is not shown) for convenience in the right
bottom quarter.

1423



1424 Martiouchev et al.

Fig. 5. (a) The dependence of the average (for the interval of time considered in the model)
growth rate V of a crystal in direction <100> on the relative initial impurity concentration
Cp.in/Cp.sol; (b) the dependence of the area (mass) M (dimensionless units) of a crystal (•)
and the impurity having a transition to the other phase (T) on the relative initial impurity
concentration C p . i n /C p . s o l .

Such a cyclic reappearance of structures is explained by the highly
unstable growth and the phase-separating medium. Two interconnected
causes influence the morphology of the formed structure: the supersatura-
tion on the crystal-solution boundary and local obstacles to the growth
arising due to the nonuniform transition of impurity to the other phase
(a typical negative feedback). Indeed, the transition from the structure
represented in Fig. 4a to the structure in Fig. 4b takes place because the
phase separation of the impurity near the formed secondary branches
occurs practically simultaneously with the growth of these branches and
prevents diffusion (a similar effect occurs at the transition from the struc-
ture with tertiary branches to the structure with secondary branches in
Fig. 4c and 4d). The transition from the dendrite in Fig. 4b to the dendrite



in Fig. 4c is explained by the fact that secondary dendritic branches, due to
the early phase separation of the impurity, become thinner and the condi-
tions at the available concentration fields of the salt and the impurity
promote the formation of the tertiary branches. The last transition (Fig. 4d
and 4e) caused by the change of the impurity concentration in the system
occurs because of the increase of intervals between branches and the coars-
ening of the branch spacings during growth. As a result, the density of the
crystal structure decreases, and the conditions promote the free movement
of the impurity from the growing crystal surface, and simultaneously the
solution near the crystal is more saturated by the salt. This results in
an intensive branching of the dendrite with the development of tertiary
branches.

Such a morphological reorganization is accompanied by an interesting
behavior of the other growth parameters. The mass as a function of
Cp.jn/Cp.soi for the impurity undergoing a transition to another phase
(Fig. 5b) has two bends, at 0.56 and 0.65, that about correspond to the
points of the disappearance of the dendrite tertiary branches. Such a non-
linear behavior can be explained as follows: with an increase of the relative
impurity concentration and crystal growth, the amount of the impurity
undergoing transition to the other phase increases, and so obstacles for
crystal growth arise at the given locations. Thus the impurity modifies the
crystal structure and the transition from the tertiary to the secondary
branches leads to the gradual disappearance of tertiary branches with the
formation of areas with the phase-separated impurity in these positions
(tertiary branches arise at a later stage of the growth; they are less steady
and accordingly they disappear more easily due to impurity influence).
After the disappearance of the tertiary branches a more essential reorgani-
zation of the dendrite is required, because it is necessary to change the
thickness or the location of the secondary branches, and so the relative
concentration of the impurity is increased, but the mass of the impurity
undergoing a transition to the other phase does not change. The dendrite
with the tertiary branches arises again after such a reorganization and
the process is repeated. At a relative concentration of the impurity in the
region of 0.68, the impurity blocks the growth in the early stage and the
mass of the impurity decreases sharply.

The general behavior of the average growth rate in the direction
<100> (Fig. 5a) under the conditions of crystallization considered in this
work is similar to the results found by the authors earlier.(6) The concentra-
tion fields of the growing secondary and tertiary branches of the dendrite
influence indirectly the growth rate of the primary branches in the direction
<100>. The more developed these branches are, the more they contribute
to the fall of the concentration near the primary branches they cause.
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Therefore, the increase of the growth rate of a crystal for an increase of the
relative impurity concentration up to 0.63 is explained by the fact that the
general mass of the secondary and tertiary branches decreases because of
the additional phase separation of the impurity. It is seen from the com-
parison of Fig. 5a and Fig. 5b that the most significant increase of the growth
rate after 0.55 coincides with a more appreciable decrease of the mass of the
crystal salts. The uneven decrease of the growth rate (Cp . i n /Cp . s o l>0.63) is
explained by the fact that the primary branches begin "to eat" from a
smaller solid angle because of the phase separation occurring already at the
early stages in the system.

The results of the computer simulation mentioned above allow us to
conclude that cyclic changes of morphology take place in the present
system (the appearance and disappearrance of tertiary dendritic branches),
which are accompanied by the change of properties. One may say, that
there are some cyclic nonequilibrium phase transitions in the extremely
unstable system under consideration. The nonequilibrum phase transitions
considered here are typical representatives of nonequilibrum phase transi-
tions, as investigated by synergetics (Benard instability, transition to tur-
bulence, etc.).(1,2) This class is characterized by the extraordinary richness
of structure arising as a result of the development of the instabilities at the
growth of the crystal from various solutions. A feature of this class of non-
equilibrum phase transition is that the space-time structure fixes itself
("solidifies itself") in space and time with the growth of the crystal. Another
characteristic feature of this class of phenomena is the existence of two
simultaneous transitions: the usual thermodynamical transition (solution-
crystal) and the nonequilibrum phase transition.

It is known(1,2) that the terminology and approaches available in
the physics of equilibrium (thermodynamic) phase transitions are widely
used for the description of nonequilibrium phase transitions (for example,
the concept of the order parameter, Landau theory, and others). The
phenomena known as reentrant phase transitions was found by Cladis for
organic substances forming a liquid crystal phase.(19) These reentrant
equilibrium transitions are characterized by a cyclic sequence of phases
consecutively replacing each other at the gradual change of temperature.
This phenomenon has not received a complete description, though it is
qualitatively explained by the presence of two interacting orientation and
translation order parameters.(20) In the present work, using a qualitative
analogy, we may say that the sequence of morphologies at the change of
impurity concentration can be called a nonequilibrium reentrant phase
transition. The quantitative changes of structure during these nonequi-
librium reentrant transitions are not so significant (for example, there is
practically no change of the fractal dimension for the structures in Fig. 4,
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1.61 ±0.02); however, a periodic change of the symmetry of the morpho-
types takes place, and it can be connected with the cyclic change of the
symmetry at the nonequilibrium reentrant phase transition.
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